Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1094720210260020179
Biotechnology and Bioprocess Engineering
2021 Volume.26 No. 2 p.179 ~ p.187
Microfluidic Single-cell Trapping and Cultivation for the Analysis of Host-viral Interactions
Ganguly Reya

Lee Byung-Jin
Kang Solib
Kim Yong-Sic
Jeong Seong-Geun
Kim Jae-Seong
Park So-Young
Yohei Yamauchi
Lee Chang-Soo
Abstract
The isolation of single cells and their further cultivation in confined chambers are essential to the collection of statistically reliable temporal information in cell-based biological experiments. In this work, we present a hydrodynamic single-cell trapping and culturing platform that facilitates biological analysis and experimentation of virus infection into host cells. To find the optimum design of the cell trap at the microscale, we evaluated hook traps with different widths and trap intervals to obtain a high trapping efficiency of a single cell. The proposed design leverages the stochastic position of the cells as they flow into the structured microfluidic channels, where hundreds of single cells are then arrayed in nanoliter chambers for simultaneous cell-specific data collection. Optimum design is used to devise and implement a hydrodynamic cell-trapping mechanism that is minimally detrimental to the cell viability and retains a high trapping efficiency (90%), with the capability of reaching high fill factors (90%) in short loading times (10 min) in a 450-trap device. Finally, we perform an analysis of host-viral interactions under the treatment of a drug concentration gradient as a proof of concept.
KEYWORD
single-cell analysis, single-cell array, hydrodynamic trapping, linear drug gradient, host-viral interaction
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)